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Exciton effects in soliton and bipolaron lattice states of 
doped electron-phonon Peierls systems 

Kikuo Harigayat, Yukihiro Shimoi and Shuji Abe 
Fundamental Physics Section, Electrotechnical Laboratory, Umezono 1-14. Tsukuba, Ib&i 
305, Japan 

Received I 1  November 1994, in final form 27 February 1995 

Abstraact. Exciton effects on soliton and bipolaron lattice states are investigated using an 
electron-lattice Peierls model with long-range Coulomb intemctions. The Hmee-Fock (HF) 
approximation and the single-excitation configuration interaction (single-a) method are used 
to obtain optical absorption spectra. We discuss the following properties. ( I )  The artmaion 
between the excited electron and the remaining hole makes the excimion energy smaller when 
the correlations are taken into account by the single CI. The oscillator suengths of the lower 
excited states become relatively larger than in the HF celculanons. (2) We look at variations of 
relative oscillatar strenglhs of WO or three kinds of exciton described by the single cl. While 
the excess electron concentration is small, the r;Uio of the oscillator strengths o f  the exciton with 
the lowest energy. which is calculated against the total electroruc excitation oscillator srrengths. 
increases almost linearly. The oscillator strengths accumulate at this exciton as the concentration 
increases. 

1. Introduction 

It is well known that correlation effects are present among K electrons in conjugated 
polymers. 

(i) The envelope of the wavefunction of the midgap state of the neutral (spin) soliton 
in trans-polyacetylene has sites with spin density of the opposite sign [l]. This fact of 
the ‘negative spin density’ has been explained by considering Coulomb interactions in the 
Su-Schrieffer-Heeger (SSH) model [Z] of conjugated polymers [3]. 

(ii) The electron paramagnetic resonance experiment of pernigraniline base [4], reported 
recently, has studied the spin distribution around a neutral soliton. It has been suggested 
that sites with negative spin density exist as the consequence of correlation effects. 

(iii) Non-linear optical response functions of polydiacetylenes exhibit excitation 
structures owing to the presence of excitons. Their structures have been explained 
theoretically by using the intermediate-exciton formalism [ 5 ] .  

Therefore, it  is generally interesting to study Coulomb interaction effects in conjugated 
polymers. In fact, this problem has been considered by various authors for more than a 
decade since the SSH model [2] was proposed. 

Electronic excitation structures in half-filled conjugated polymers with constant 
dimerization have been theoretically investigated by using the exciton formalism [SI and 
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the exact diagonalization method [6 ] ,  and also by solving the timedependent Hartree-Fock 
(w) equations [7]. This problem was pointed out earlier, but excitation structures have been 
considered intensively only recently, relating with origins of non-linear optical spectra [&SI. 
The most remarkable consequence of correlation effects is that the lowest-energy excitation 
has the largest oscillator strength. It is clearly seen when the optical spectra calculated 
by using the HF wavefunctions are compared with the spectra with the correlation effects. 
This fact does not depend on whether the higher correlations are taken into account by the 
single-excitation configuration interaction (single-cl) method [5], or by the timedependent 
HF formalism [7]. 

It is widely known that the soliton, polaron, and bipolaron lattices are present [9], when 
the SSH model [2]. its continuum version, and the extended model with the term OF the 
non-degeneracy [IO] are doped with electrons or holes. New bands related to non-linear 
excitations develop in the Peierls gap as the doping proceeds. When correlation effects 
are considered by the single CI, the excitation structures exhibit the presence of excitons. 
There is one kind of exciton in the half-filled system, where the excited electron (hole) 
sits at the bottom of the conduction band (top of the valence band). We will call this the 
'inlercontinuum exciton'. In the soliton lattice states of the doped SSH model for degenerate 
conjugated polymers, there are small gaps between the soliton band and the continuum 
states, i.e., valence and conduction bands. Therefore, the number of this kind of exciton 
will increase and their presence will be reflected in shuctures of the optical spectra. A 
new exciton, namely a 'soliton-continuum exciton', will appear when the electron-hole 
excitation is considered between the soliton and one of the continuum bands. The main 
purpose of this paper is to embody the above picture. There have been a lot of investigations 
of correlation effects in doped SSH systems, but the work from the viewpoint of excitons 
has been rarely performed. General properties of exciton effects on soliton lattice systems 
are the first interest of the paper. The portion of the spectral weights of the two kinds of 
excitons will be calculated and discussed. 

There are two midgap bands, when the non-degenerate conjugated polymers are doped 
and bipolaron lattice states are formed. The excitation spectra will become complicated due 
to the increase of the number of kinds of exciton. The second part of this paper will be 
devoted to this problem, and the relative spectral weight of each exciton will be studied 
again. 

This paper is composed as follows. In section 2, the model is introduced and the 
numerical method is explained. Results for the soliton lattice system are reported in section 
3. Effects of the non-degeneracy are investigated in section 4, The paper is summarized in 
section 5, and a discussion is given in the final section. 

2. Model 

The Following Hamiltonian is used to discuss excitonic effects in soliton and bipolaron 
lattice states of Peierls systems: 

(1) ff = HSSH + Hi.,. 
The first term H~SH of equation (1) is the SSH model: 

where f is the hopping integral of the system without the dimerization; 01 is the electron- 
phonon coupling constant which changes the hopping integral linearly with respect to the 
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bond variable y i ;  $r  is the Brazovskii-Kirova (BK) term which measures the degree of 
the non-degeneracy (it was originally introduced in the continuum model [lo]); cC." is an 
annihilation operator of the x electron at the site i with spin c; the sum is taken over all 
the lattice sites of the 'periodic chain; and the last term with the spring constant K is the 
harmonic energy of the classical spring simulating the U bond effects, The second term of 
equation (1) is the long-range Coulomb interaction in the form of the Ohno potential [ 111: 

where net is the number of x electrons per site, 
sites, and 

is the distance between the ith and j th  

is the Ohno potential. The quantity W ( 0 )  = U is the strength of the on-site interaction, and 
V means the strength of the long-range part. 

n . l  1 

I I 
0 20 IO 60 B O  100 

S i r e  sire 
Figure 1. (a) The dimerimion order parameter, (- I)"(yn+l - yn)/2. and (b) the excess electron 
density. h-1 t 2pn t pm+1)/4. The parameten itre S = 0. U = 4I, V = 2. N = 100. a d  
Nd = 104. See the text for the other parameters. 

The model is treated by the HF approximation and the single CI for the Coulomb potential. 
The adiabatic approximation is forced on the bond variables. The HF order parameters and 
bond variables are determined self-consistently using the standard iteration method [ 121. 
After the HF approximation H + HHF,  we divide the total Hamiltonian as H = Hm + H'. 
The term H' becomes 

H' = U ~ ( C ! , , C i . +  - P i . T ) ( C I L C i . I  - P i . d  

t where pj,,, = ( C ~ , , C ~ . ~ )  and qj." = ( C ~ , ~ C ~ , ~ )  are Hartree-Fock order parameters. When we 

hole excitations [ p h )  = C ~ , ~ C ~ , ~ [ ~ )  (p means an unoccupied state; we assume both singlet 
write the HarEree-Fock ground state [g) = ni.o~"pi.d~l,+~.I,IIO) t i  and the single electron- 
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Figure 2. The Optical absorption specma calculated with the w wavefunctions for (a) 
(N. N.1) = (101, IOZ), (b) (100, 102). and (c) (100, 104). The broadening y = 0.0% is used. 
The units of the abscissa are arbitmy The component of the electron-hole excitation between 
lhe soliton and conduction bmds is shown by dots which are connected with thin lines. The 
dots are ploned with the same abscissa as the absorption data. The minimum of the component 
is zero. and the maximum is unity. The energy positions of the optical gaps are shown by the 
triangles at the top of each figure. 

and triplet excitations in this abbreviated notation), the matrix elements of the HF part and 
the excitation Hamiltonian become as follows: 

where (. . .) means the expectation value with respect to the HF ground state, i.e., (HW) = 
(glffHFlg) and (H') = (glH'lg), and E@ is the energy of the HF orbital, 6s = 1 for spin 
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Figure 3. The optical absorption specea calculated with the HF plus singlea wavefunctions for 
(3) ( N .  Na) = (101. 102). (b) (100. 102), and (c) (100, 104). The broadening y = 0.051 IS used. 
The unirs of the ohscissa are arbitmy. The component of the elecbon-hole excitation between 
the soliton and conduction bads is shown by dots whch are connecred with thin lines. me 
dots are plotted with the same abscissa as the absorption data. The minimum of h e  component 
is zero. and the maximum i s  unity. The energy positions of the ophcal gaps me shown by the 
triangles at the top of each figure. 

singlet, 65 = 0 for spin triplet, and 
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with Vi,i = U ,  Vj., = W(ri.1) for i # j .  The diagonalization of the total Hamiltonian H 
gives the set of the excited states ( 1 ~ ) )  within the single-cl method. In the actual calculation, 
we limit the spin configurations to the singlet excitations which are the main interests of 
optical excitations. 

We assume a geometry of a ring for a polymer chain, in order to remove edge effects. If 
we use an open boundary, the dimerization and thus the Peierls gap becomes larger near the 
two edges, and this might result in artifacts of optical spectra. We shall use the coordinates 
of j t h  carbon atoms, 

( r  cos 7, r sin -, 0 
2irj N 1 

where r = Na/(271) is the radius of the polymer ring; N is the system size and a is the 
lattice constant. The electric field of light is parallel to the x-y plane. In order to obtain 
optical spectra which are independent of the relative positions of solitons with respect to 
the direction of light, we shall sum up two spectra where light is along with the x and y 
directions. So. we use the following formula of the spectrum: 

E,P(O - ~ , ) ( ( g k l K ) ( K l . ~ l g )  + ( d Y I K ) ( K I Y l g ) ) .  (11) 

Here, P(o) = y / [ i r ( w 2  + y 2 ) ]  is the Lorentzian distribution ( y  is the width), E,  is the 
electron-hole excitation energy, and lg) means the ground state. In (1 l), the quantity 

E K ( ( g l x l K ) ( K I X k )  k ? l Y I K ) ( K l Y l g ) )  (12) 

x 

is the oscillator strength of the excited state I K ) .  Applying electric field to the ring-shaped 
polymer simulates the situation that polymer chains are oriented randomly in every direction 
within the x-y plane. The average over orientations is effectively performed. A similar 
idea has bccn used in the recent paper by Abe et a1 [5 ] .  

The system size is chosen as N = 80,100,120 when the electron number is even (it is 
varied from Ne: = N ,  N + 2, N + 4, N + 6 to N + 8). because size around 100 is known to 
give well the energy gap value of the infinite chain. A larger system siu: becomes tedious 
for doing single-cr calculations which call for huge computer memories. When there is one 
soliton, we take N = 81, 101, 121, and use the periodic boundary condition also. Both the 
combinations, (N, Ne!)  = (80.84) and (120, 126). give a 5% concentration of the excess 
electrons. Therefore, two symbols will appear at a 5% concentration in figurcs 4, 5, 8, and 
9. when numerical results are plotted against the doping concentration. This is a remark for 
later convenience. 

In principle, we have to adjust parameters and find appropriate ones in order to reproduce 
experimental data, such as the energy gap and the dimerization amplitude. But, we will 
change parameters arbitrarily in a reasonable range in order to look at excitonic effects 
clearly. The Coulomb parameters are changed within 0 < V < U < 5t ,  and we show results 
for U = 2V = 2t and = 4r as the representative cases. Other parameters, t = 1.8 eV, 
K = 21 eV A-', and (Y = 4.1 eV A-', are fixed in view of the general interests of this 
paper. All the quantities of energy dimension are shown in the units o f t .  

3. Soliton lattice systems 

Figure 1 shows the typical lattice configuration and excess electron density distribution for 
N = 100, Ne: = 104, U = 4t, V = 2t, and 60 = 0. Both quantities are the smoothed 
data after the removal of small oscillations between even- and odd-number sites. There are 
four charged solitons due to the excess electron number Ne: - N = 4. Solitons are arrayed 
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equidistantly. The excess electron density shows the oscillation of the charge density with 
its maxima at the soliton centres. 

Next, let us look at optical spectra and consider exciton effects. We calculate also the 
optical spectra from single-electron excitations among HF energy levels as references of 
exciton effects. The typical optical spectra within the HF approximation and with the single 
CI are shown as figures 2 and 3, respectively. The broadening y = 0.0% is used. The 
Coulomb parameters are U = 4r and V = 2. Relatively strong Coulomb interactions are 
taken in order to look clearly at the exciton effects in the optical response. The system size 
and the electron number are (N, Ne,) = (101, 102), (100,102), (100, IM), for (a), (b), and 
(c) (of figures 2 and 3), respectively. 

In order to characterize properties of optical excitations, in other words, to identify 
whether the excitons are formed between valence and conduction bands ('intercontinuum 
exciton'). or between soliton and conduction bands ('soliton-continuum exciton'), we 
calculate the component of the electron-hole excitation between the soliton and conduction 
bands for the absorption spectra within HF as well as those with the single CI. Here, in other 
words, the 'component' is the ratio of the oscillator strengths of the soliton-continuum 
exciton with respect to the total oscillator strengths of the two kinds of exciton. Results are 
shown in figures 2 and 3, superposed with the optical spectra. We can easily determine the 
position of the optical gap by comparing components of each kind of exciton. The optical 
gap of one exciton is located at the lowest energy where the component is larger than that 
of the other exciton. 

As we proceed from figure 2(a) to figure 2(c) with increasing soliton concentration, 
the contribution from the transition between the soliton band and the conduction band 
becomes larger than that between the valence and conduction bands. In other words, 
the optical transition between the soliton and conduction bands rapidly develops as the 
soliton concentration increases. The energy positions of optical gaps of excitons are shown 
by the triangles at the top of each figure. The lowest optical gap is about 0.7t, 0.9t, 
and 1.0~ in figures 2(a), (b), and (c). respectively, and is slightly increasing, The almost 
constant behaviour can be explained as follows. The HF order parameter q.j. .  introduces an 
additional bond order, and thus increases the energy gap. In contrast, the lowest optical gap 
is a decreasing function of the soliton concentration in the free-electron case. Therefore, 
the decrease of the optical gap in the free-electron case is suppressed by the increase of 
the energy gap in the presence of long-range Coulomb interactions. The optical gap of the 
transition between the continuum states is about 1.6t, 1.72, and 1.9t for the three figures. 
This quantity becomes larger with the concenkation, due to the increase of number of states 
in the soliton band. 

We shall look at the optical spectra by HF and single-cr calculation in order to discuss 
exciton effects. They are shown in figure 3. The optical gap of the soliton-continuum 
exciton is 0.6t. 0.7r, and 0.8r in figures 3(a), (b), and (c), respectively. The optical gap 
of the intercontinuum exciton is 1.4r, 1.4t, and 1.6f for the three figures. Here, we have 
regarded the energy position of the lowest excitation where the component of the soliton- 
continuum exciton becomes smaller than 0.5 as the optical gap of the intercontinuum exciton. 
Both optical gaps decrease apparently from those of figure 2. This is due to the binding 
of an electron and a hole in the CI treatment. We also find that the soliton-continuum 
exciton has a larger total oscillator strength than that of figure 2. This is due to the one 
dimensionality, discussed in [5 ] .  

There are many small structures in the optical spectra due to the finite system size. 
They could be removed by doing calculations for larger systems, as has been done in [I31 
by reducing the dimension of the matrix of CI excitations by means of the translational 
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symmetry for the half-filled Hamiltonian. But the reduction of the system size is difficult 
for soliton lattice states owing to the periodicity of the system which changes with the soliton 
concentration. In order to pursue the change of optical excitation characters systematically 
for various combinations of parameters, we rather perform calculations for small system 
sizes around 100 and analyse numerical data as functions of the soliton concentration. In 
fact, when the optical gap and the ratio of the total oscillator strengths of the soliton- 
continuum exciton are plotted against the soliton concentration, (Nd - N ) / N ,  the plots are 
arrayed rather smoothly. We shall look at the data in figures 4 and 5. 

Concentration (%) Concentration (%) 
Figure 4. The optical gaps in the single ci of the 'intercontinuum exciton' (filled squares) 
and of the 'solitoneontinuum exciton' (open squares), plotted againinst the soliton conceniraiion. 
Coulomb interaction panmeten are (U. V) = (2I.  I f )  for (a), and (4I, 21) for (b). We note that 
the two symbols at the 5% concentration are lhe dm for the combinations (N, Nd) = (80.84) 
and (1'20. 126). 

Figure 4 summarizes the optical gaps of the two kinds of exciton. They are calculated 
by the HF followed by the single ci. Figures 4(a) and (b) are for U = 2V = 2t and = 4t. 
respectively. The gaps of the intercontinuum exciton and soliton-continuum exciton are 
shown by filled and open squares, respectively. The optical gap of the soliton-continuum 
exciton is almost independent of the concentration, owing to the balance between the 
decrease due to the soliton concentration change and the widening of the energy gap owing 
to the presence of long-range Coulomb interactions. The gap of the intercontinuum exciton 
increases rapidly when the concentration is larger than 2.5%. This is due to the fact that the 
number of states in the soliton band increases, and thus the energy gap between continuum 
states increases. It seems that these properties are common for the two Coulomb parameter 
sets. The optical gaps are larger for stronger Coulomb interactions. This is due to the larger 
bond order parameters which enhance the Peierls gap of the system. 

Figure 5 shows the ratio of the oscillator strengths of the soliton-mntinuum exciton, 
plotted against the soliton concentration. The filled and open squares are the results of 
the HF-CI and HF calculations, respectively. The filled squares have a larger ratio than the 
open ones. This is one of the exciton effects. When the concentration is near zero, the 
ratio varies almost linearly. This would be the natural consequence for low concentrations, 
because interactions among solitons are exponentially small and thus the ratio is proportional 
IO the number of solitons. The increase near the zero concentration is slower for the stronger 
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(a) U=2t V=l t  
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(b) U=4t V=2t 

0 2.5 5 7.5 10 0 2.5 5 7.5 J 

Concentration (%) Concentration (95) 
Figure 5. The ratio of lk total oscillator strength of Ihe 'soliton-continuum exciton' as a 
huction of the soliton concentration. The open squares are the data for the HF absorption, while 
the filled ones are for the W-CI absorption. Coulomb interaction panmeters are (U. V )  = (2. I t )  
for (a), and (4t. 2) for (b). 

U and V of figure 5(b) than in figure 5(a). This would be due to the fact that the soliton 
width is smaller for the stronger Coulomb repulsions and the portion of regions with nearly 
perfect dimerization strengths is larger. The increase of the ratio saturates at about 5% in 
figure 5(a) and at about 7% in figure 5@). The soliton+ontinuum exciton becomes like a 
free exciton at larger concentrations owing to the formation of the soliton band. 

4. Bipolaron lattice systems: confinement effects 

There exist only two kinds of degenerate conjugated polymer. They are trans-polyacetylene 
and pemigraniline base. All the other conjugated polymers have non-degenerate ground 
states. Therefore, it is also interesting to look at exciton effects in this type of polymer. The 
structures of non-degenerate conjugated polymers are generally complex, including aromatic 
rings and side chains. For this reason, the simple SSH-type models directly simulate only the 
structures of linear chain polymers: tram- and cis-polyacetylenes. However, the SSH model 
with a non-zero BK term has a non-degenerate ground state which is one of the general 
properties described by the simple SSH-type models. Therefore, i t  is of general interest to 
look at excitonic effects on non-degenerate conjugated polymers. We shall consider the 
model equation (1) with 80 = 0.02. This small BK term gives rise to the large energy 
difference between the ground state and the excited state with the reversed phase of the 
bond alternation pattern, after calculations of adiabatic approximation with the full lattice 
relaxation. The Coulomb and lattice parameters are the same as in the previous section. 

We here note that there exist conjugated polymers, where phenylene rings are present, 
such as polyaniline and poly(para-phenylenevinylene) (Pw). It is possible that a state with 
the reversed bond alternation phase is not present. However, we believe that only a small 
60 makes a large energy difference between the ground state and the state with the reversed 
bond alternation phase, and thus general properties of non-linear excitations do not depend 
sensitively on whether there are states with much larger energies than that of the ground 
State. 
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Figure 6. (a) The dimerization order panmeter. (- 1) ‘ (yn+,  - y.)/Z. and (b) the excess electron 
density, ( ~ “ - 1  + Zp, i. p.+1)/4. The panmeters are S = 0.02, U = 41. V = 21, N = LOO. and 
NC] = 104. See the text for the other panmeters. 
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Figure 7. The optical absorption spectra calculated with the HF (thin lines) and HF-a (Ihick lines) 
wavefunctions for (a) (N .  N,)) = (100, 102) and (b) (100, 104). The broadening y = 0.05I is 
used. The units of the abscissa are arbiuary. 

Figure 6 shows the static lattice configuration and the excess electron density distribution 
for N = 100. Ne] = 104, U = 4t, and V = 2t. Figure 6(a) displays the lattice configuration. 
The ground state with the positive bond variable is more stable than the state with the 
negative bond variable. Therefore, the region with the negative bond variable becomes 
smaller than in figure ](a), and two neighbouring solitons come closer to each other to 
form a bipolaron. There are two bipolarons in figure 6(a). The electron distribution pattem 
in figure 6(b) reflects the fact that two solitons are confined to form a bipolaron. If the 
confinement is stronger, two peaks in the charge density distribution change into a single 
peak, 

As we have done in the previous section, we shall calculate optical absorption spectra 
by using the HF wavefunctions only as well as by performing single-cl calculations. Figure 
7 shows the results of HF absorption (thin lines) and those of HF plus single-CI absorption 
(thick lines). The following parameters are the same as in figure 6: U = 2V = 4t and 
N = 100. The electron number is Ne, = 102 for f isre 7(a) and Ne, = 104 for figure 
7(b). The broadening y = 0.0Sr is used. The major difference between the HF and HF-CI 
absorption is that the overall feature in the HF absorption shifts to lower energies in the 
HF-21 one. This is one of the exciton effects. 

A single bipolaron has two midgap states. Then, there are two midgap bands in the 
bipolaron lattice system. The number of excitons is three. We shall name them as follows: 
the photoexcited state from the upper bipolaron band to the conduction band as the ‘lower 
bipolaron-continuum exciton’, the exciton from the lower bipolaron band to the conduction 
band as the ‘upper bipolaron-continuum exciton’, and the exciton between the continuum 
states as the ‘intercontinuum exciton’. In figure 7(a), the optical gaps of the lower bipolaron- 
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continuum exciton, the upper bipolaron-continuum exciton, and the inter-continuum exciton 
are ahout 0 3 ,  0.7r, and 1.6t, respectively. In figure 7@) ,  they are about O h r ,  0.9r. and 
1.6t, respectively. The total oscillator strength of the upper hipolaron-continuum exciton is 
always much smaller than that of the other two excitons. This property is already seen in the 
free-electron case and is independent of the magnitudes of U and V .  As the concentration 
of the bipolarons increases, the oscillator strength of the lower hipolaron-continuum exciton 
enhances rapidly, and that of the intercontinuum exciton becomes smaller. 

(a) U=2t V = l t  

B B  m m  
m m  

0.5 

0 2.5 5 7.5 10 0 2.5 5 7.5 10 

Concentration (%) Concentration (%) 
Figure 8. The optical gaps in the single CI of the ’intercontinuum exciton’ (filled squares). of the 
‘upper bipolmn-continuum exciton’ (crossed sqwresl, and of the ‘lower bipolaron-continuum 
exciton’ (open squares). plotted agmnst the excess elecuon concentration. Coulomb interaction 
parameters are (U,  V )  = (2. It1 for (a), and (4r.W for (b). 

I 

0.75 

g 0.5 

U=2t V=l t  
0.25 

0 
0 2.5 5 7.5 10 

1 

0.75 

0 .= 3 0.5 .! U=4t V=2t 
0.25 -.. 0 

0 2 5  5 7.5 10 

Concentration (%) Concentration (%) 

Figure 9. The ratios of the tMal oscillator strength of the ‘upper (lower) bipolmn-continuum 
exciton’ as functions of the excess elect” concentmon. The squares are for the lower 
exciton, and the circles are for the upper exciton. The open symbols are the data for the HF 
absorption, while the filled ones are for the HF-CI absorption. Coulomb interaction parameters 
are (U. V )  = (2t ,  It)  for (a), and (4t ,  2r) fat (b). 

In order to analyse the concentration dependences systematically, we perform 
calculations for several combinations of the system size N and the electron number Net. 
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The electron number is always even, and then the bipolaron number is half of the excess 
electron number Nd - N .  Figure 8 summarizes the optical gaps of three kinds of exciton 
(singlecl description), plotted against the excess electron concentration: (Ne, - N ) / N .  We 
take two combinations of Coulomb parameters: (U, V )  = (21, I t )  (figure 8(a)) and (4t, 2t) 
(figure 8(b)). The optical gaps of the intercontinuum exciton, and upper (lower) bipolaron- 
continuum excitons, are shown by the filled and crossed (open) squares, respectively. The 
arrays of the plots behave smoothly. so it seems that the size effects are small. The 
optical gaps of the intercontinuum exciton and upper bipolaron-continuum exciton increase 
gradually as functions of the excess electron concentration. But the increase of the lowest 
optical gap is suppressed, and it  is nearly constant for concentrations larger than about 5%. 
Similar behaviours have been seen in figure 4 for the soliton lattice case. 

Finally, we consider the character of the optical excitations by looking at the ratios of the 
total oscillator strengths of lower and upper bipolaron-continuum excitons. Figure 9 shows 
the rcsults plotted against the excess electron concentration. The squares arc the data of the 
lower bipolaron-continuum excitons, and circles are the data of the upper ones. The open 
symbols are the data of the HF absorption, and the filled ones are for the HFCI calculations. 
The ratios in the HFCI absorption spechli are calculated as we have done in the soliton 
lattice case. Here, we assign the optical excitation to the exciton whose component is the 
largest among three excitons. The closed squares have a larger ratio than the open ones, 
due to exciton effects. The increase near the zero concentration of the lower bipolaron- 
continuum exciton is suppressed for the stronger U and V of figure 9(b) than in figure 
9(a). In other words, the increase of the ratio is steeper for weaker Coulomb interactions. 
This would be due to the fact that the bipolaron width is smaller for the stronger Coulomb 
repulsions and the portion of regions with nearly perfect dimerization strengths is larger. 
The increase of the ratio nearly saturates at about 5%. The lower bipolaron-continuum 
exciton becomcs like a free exciton at larger concentrations. In contrast, the ratio of the 
upper bipolaron-continuum exciton is always small, and it is smaller than about 0.20. This 
smallness is already seen in the free-electron case, and persists when there are Coulomb 
interactions. The same property in the optical spectra of the polaron and the bipolaron has 
been discussed in [14]. 

5. Summary 

We have looked at exciton effects on soliton and bipolaron lattice states in a model of the 
interacting electron-lattice system with long-range Coulomb interactions. The Hartree-Fock 
approximation and the single-cl method have been used IO obtain optical absorption spectra. 
We have discussed the following properties. 

( I )  By comparison of the HF absorption with the HF-CI one, we have seen exciton effects 
which are similar to those discussed for the half-filled systems in 15, 71. The attraction 
between the excited electron and the remaining hole makes the excitation energy smaller 
when the correlations are taken into account by the single CI. The oscillator strengths of the 
lower excited states become relatively larger than in the HF calculations. 

(2) We have looked at variations of relative oscillator strengths of two or three kinds 
of exciton described by the single CI. While the excess electron concentration is small, the 
ratio of the oscillator strengths of the lowcst exciton increases almost linearly and more than 
80% of the oscillator strengths accumulate at the lowest exciton when the excess electron 
concentration is larger than about 5%. It seems that this accumulation is very rapid as the 
concentration increases. 
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6. Discussion 

In  this paper, we have discussed general properties of excitons in degenerate and non- 
degenerate conducting polymers. We believe that the general properties are well described 
by the present calculations, even when phenylene rings are present in polymer chains. 
Recently, there have been discussions on the optical responses [15] and non-linear 
excitations [I61 in PPV. The envelope of the polaron excitation has been experimentally 
determined [I61 in the PPV system. Even though the optical absorption spectra of PPv could 
be well explained by a non-interacting model such as the SSH-type Hamiltonian, we will 
discuss in the next paper 1171 the fact that exciton effects should be considered properly in 
order to explain several experimental features, such as the envelope of the localized spin 
around the polaron [16], the magnitude of the optical gap [15], and the photoconductivity 
threshold [15]. We can also extend the present calculation to the polaron lattice state of 
PPV by considering the phenylene ring structures. This is an interesting problem for further 
studies. 

The variations of the optical gaps and the ratios of the oscillator strengths as functions 
of the concentration of the non-linear excitations (solitons or bipolarons) are rather smooth 
It seems that how to systematically deal with such kinds of numerical datum obtained from 
numerical diagonalizations of finite systems has not yet been fully investigated. We have 
looked at variations as functions of the concentration, and have found smooth variations. 
This fact was not stressed earlier, and plotting as a function of the concentration will be a 
useful method for future investigations of systems with non-linear excitations. 
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